【例题】0,1,5,23,119,( )
A.719 B.721 C.599 D.521
【例题】0,0,3,20,115,( )
A.710 B.712 C.714 D.716
【例题】3,2,11,14,( ),34
A.18 B.21 C.24 D.27
【例题】14,20,54,76,( )
A.104 B.116 C.126 D.144
【例题】1,2,2,3,4,6,( )
A.7 B.8 C.9 D.10
河北公务员网(http://www.hebeigwy.org/)解析 题目或解析有误,我要纠错。
【解析】A。该数列是阶乘数列1!=1,2!=2,3!=6,4!=24,5!=120的每一项添加了修正项“-1”而得的,加上该修正项之后,所求项恰好为6!-1=719。
由该题可以认识到两个三个层面的内容:第一,数字推理有不少试题看似很难,其实只是一些基本数列的简单变形;第二,推想一下“-1”可以作为修正项,那么其他数字,甚至是简单的数列皆可作为修正项;第三,该数列是以阶乘数列作为基础数列进行修正,那么其余的数列也可以作为基础数列。
【解析】C。该数列是阶乘数列1!=1,2!=2,3!=6,4!=24,5!=120的每一项分别添加修正项-1、-2、-3、-4、-5而得的,根据此规律所求项恰好为6!-6=714。
【解析】D。该数列是平方数列12=1,22=4,32=9,42=16,(),62=36的每一项依次添加修正项+2、-2、+2、-2、+2、-2而得的,根据此规律所求项恰好为52+2=27。
【解析】C。该数列是奇数的平方数列32=9,52=25,72=49,92=81的每一项依次添加修正项+5、-5、+5、-5而得的,根据此规律所求项恰好为112+5=126。
【解析】解析一:C。该数列可以看做是将斐波那契数列0,1,1,2,3,5的每一项添加修正项“+1”而得,根据此规律所求项恰好为8+1=9。
解析二:C。该数列的递推规律为an=an-1+an-2-1,该递推规律恰好是斐波那契数列递推规律an=an-1+an-2添加了修正项“-1”而得。