图形推理中的空间重构类题目,虽然其考查形式比较单一,一般都是折纸盒或拆纸盒的题目,但是由于其考查过程中纸盒形状的多样性、纸盒各个面上图形变化的灵活性以及内外表面变化的随意性,使其对考生而言“高深莫测”。其实,空间重构着重考察的是考生的空间思维能力,但是绝大多数考生的空间思维能力却并不突出,因此,要想彻底解决这个“后顾之忧”,河北公务员考试网(www.hebeigwy.org)为最优化的方法便是将其“平面化”--这是一个基本的解题思路。而要将其“平面化”,方法有两个:时针法和公共顶点法,如能将这两个方法掌握,则在解此类题目的过程中便无往而不利了。下面分别介绍一下这两种方法:
一、时针法
时针法是较为简单的一种方法,无非是以立体图形中相邻的三个面为基准,分别去选项中找寻这三个面,并按照同样的顺序画时针。然而并非任意三个面都可以画时针,在六面体中,能够画时针的三个面必须满足以下两个条件:(1)画时针的三个面必须不存在平行面;(2)画时针的时候必须保证这三个面至少两对两两有交点。二者缺一不可。如在下图中,两个平面图中1、2、3三个面都不平行,这满足了画时针的第一个条件;第一个图形中1、2两个面有交点,即两个红点,2、3两个面也有交点,即一个蓝点,第二个图形中1、2两个面的交点为a、b,1、3两个面的交点为b、c,2、3两个面的交点为b,第一个图形中两对面两两有交点,第二个图形中三对面都两两有交点,所以满足画时针的第二个条件,很明显,这两个图是可以直接画时针的。
但是,在有些空间重构类的题目中,是并不满足直接画时针的条件的。如:下图中的1点、3点、6点三个面,虽然三个面都不平行,但是很明显只有1点、3点之间有公共点,但是6点和它们并没有公共点,所以不满足画时针的条件(2),此时要移动,根据平行面来移动,6点和2点平行,所以可以将6点移动到红字标出的1和2的位置,无论是1的位置还是2的位置都可以直接画时针了。
另外,在非正六面体中,时针法也完全适用,而且不论是内表面还是外表面,因为在平面图形中,内外皆可。如下题。A选项中的三个面在原图中找到后,发现不满足画时针的第2个条件,所以将类似立体容器盖子的最小正方形移到了上方,右边的逆时针为A选项在平面中的时针,与A立体图中的顺时针不一致,所以A错,同理可知C对。
下图给定的是纸盒的外表面,下面哪一项能由它折叠而成?
二、公共顶点法
此处的知识点有三条:(1)互相垂直的两条边(必须是长度一样的边)的端点是公共顶点;(2)对面/平行面之间不可能有公共顶点;(3)相交于同一个公共顶点下的三个面,其面上的图形必须与公共顶点的位置关系保持不变。
第(1)点有老师教研过,此处不再赘述,即下图中三个红点、三个蓝点折成立体图形后会是同一个公共顶点。第(2)点理解起来容易,但用起来难度较大。如何来用,如下图:两个粉色的点a、b是公共顶点。原因如下:a在1面和3面上就不可在1面和3面的平行面上即5和6面,而1、3、4的公共点也很显然,所以相交于a点的另一个面肯定是2面,而2面上的红点不可能,2面下方的两个点因为在6面上,自然也不能在其平行面3面上,所以也排除,只能是b点。
第(3)点用起来较简单,也比较常用,但要基于(1)和(2)两点即在找到公共顶点的情况下。如下面例题:
其中红点是A选项中的公共顶点,原图中1面上的斜线未经过公共点,而A选项经过了,所以错了;黑点是B选项中的公共顶点。原图中2面上的斜线未经过公共顶点,但B选项经过了,所以错了;C选项用公共顶点无法直接看出,可以用时针法排除,但要确定C选项中2、3这两个面也是有一定难度的,完全可以按照公共顶点,发现3面中红色线段标示的地方,相应的找到2和3面,直接用时针就可以。
行测更多解题思路和解题技巧,可参看2013年公务员考试技巧手册。